Nueva era de investigación en superconductividad: los científicos descubren la materia ‘Ricitos de oro’
Investigadores de TU Wien y universidades en Japón usaron simulaciones por computadora para determinar la «región dorada» para una superconductividad óptima. Esta región, donde la interacción entre los electrones es fuerte pero no muy fuerte, está siendo alcanzada por una nueva clase de materiales llamados palladatos, que podrían marcar el comienzo de una nueva era en la investigación de la superconductividad.
TU Wien ha realizado cálculos que indican el uso de metal paladio como materiales «Ricitos de oro» para crear superconductores que siguen siendo superconductores incluso a temperaturas relativamente altas.
En el ámbito de la física moderna, se está llevando a cabo un esfuerzo emocionante: determinar el método óptimo para crear superconductores que mantengan la superconductividad a altas temperaturas y presiones ambientales. Este esfuerzo se ha revitalizado en los últimos tiempos con la llegada del níquel, marcando el comienzo de una nueva era de superconductividad.
La base de estos superconductores se encuentra en el níquel, lo que ha llevado a muchos científicos a referirse a este período de investigación de la superconductividad como la «edad del níquel». En muchos aspectos, las monedas de cinco centavos son similares a los cobres, que se encontraron en la década de 1980 y se basan en el cobre.
Pero ahora está entrando en juego una nueva clase de materiales: en colaboración entre TU Wien y universidades de Japón, ha sido posible simular el comportamiento de diferentes materiales en una computadora con mayor precisión que antes.
Hay una «Zona Ricitos de Oro» en la que la superconductividad funciona bien. Y a esta región no se llega con níquel, ni con cobre, sino con paladio. Esto podría marcar el comienzo de una «nueva era de pisos» en la investigación de la superconductividad. Los resultados ya se han publicado en la revista científica
The search for higher transition temperatures
At high temperatures, superconductors behave very similarly to other conducting materials. But when they are cooled below a certain “critical temperature”, they change dramatically: their electrical resistance disappears completely and suddenly they can conduct electricity without any loss. This limit, at which a material changes between a superconducting and a normally conducting state, is called the “critical temperature”.
“We have now been able to calculate this “critical temperature” for a whole range of materials. With our modeling on high-performance computers, we were able to predict the phase diagram of nickelate superconductivity with a high degree of accuracy, as the experiments then showed later,” says Prof. Karsten Held from the Institute of Solid State Physics at TU Wien.
Many materials become superconducting only just above absolute zero (-273.15°C), while others retain their superconducting properties even at much higher temperatures. A superconductor that still remains superconducting at normal room temperature and normal atmospheric pressure would fundamentally revolutionize the way we generate, transport, and use electricity. However, such a material has not yet been discovered.
Nevertheless, high-temperature superconductors, including those from the cuprate class, play an important role in technology – for example, in the transmission of large currents or in the production of extremely strong magnetic fields.
Copper? Nickel? Or Palladium?
The search for the best possible superconducting materials is difficult: there are many different chemical elements that come into question. You can put them together in different structures, you can add tiny traces of other elements to optimize superconductivity. “To find suitable candidates, you have to understand on a quantum-physical level how the electrons interact with each other in the material,” says Prof. Karsten Held.
This showed that there is an optimum for the interaction strength of the electrons. The interaction must be strong, but also not too strong. There is a “golden zone” in between that makes it possible to achieve the highest transition temperatures.
Palladates as the optimal solution
This golden zone of medium interaction can be reached neither with cuprates nor with nickelates – but one can hit the bull’s eye with a new type of material: so-called palladates. “Palladium is directly one line below nickel in the periodic table. The properties are similar, but the electrons there are on average somewhat further away from the atomic nucleus and each other, so the electronic interaction is weaker,” says Karsten Held.
The model calculations show how to achieve optimal transition temperatures for palladium data. “The computational results are very promising,” says Karsten Held. “We hope that we can now use them to initiate experimental research. If we have a whole new, additional class of materials available with palladates to better understand superconductivity and to create even better superconductors, this could bring the entire research field forward.”
Reference: “Optimizing Superconductivity: From Cuprates via Nickelates to Palladates” by Motoharu Kitatani, Liang Si, Paul Worm, Jan M. Tomczak, Ryotaro Arita and Karsten Held, 20 April 2023, Physical Review Letters.
DOI: 10.1103/PhysRevLett.130.166002
«Solucionador de problemas profesional. Sutilmente encantador aficionado al tocino. Jugador. Ávido nerd del alcohol. Pionero de la música».